Analysis and validation of a scaled, launch-vehicle-like composite cylinder under axial compression

نویسندگان

چکیده

Launch vehicle structures, such as payload adapters and interstages, are increasingly designed constructed using composite materials due to their high stiffness- strength-to-weight ratios. Therefore, it is important develop a validated finite element modeling methodology for designing analyzing launch-vehicle shell structures. This can be achieved, in part, by correlating high-fidelity numerical models with test data. Buckling often an failure mode cylindrical shells, the buckling response of structures also quite sensitive imperfections geometry loading. Hence, crucial understand model parameters details required accurately predict load behavior especially if critical. The inclusion as-built features, radial imperfections, thickness variations, loading help improve correlation between analysis. To demonstrate approach, that was used scaled component launch-vehicle-like structure presented, results from compared experimental results. approach presented herein successfully behavior.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic Buckling Analysis of Composite Shells with Elliptical Cross-section under Axial Compression

In the present research, the elastic buckling of composite cross-ply elliptical cylindrical shells under axial compression is studied through finite element approach. The formulation is based on shear deformation theory and the serendipity quadrilateral eight-node element is used to study the elastic behavior of elliptical cylindrical shells. The strain-displacement relations are accurately acc...

متن کامل

Test and Analysis of a Composite Multi-bay Fuselage Panel under Uni-axial Compression

A composite panel containing three stringers and two frames cut from a vacuum-assisted resin transfer molded (VaRTM) stitched fuselage article was tested under uni-axial compression loading. The stringers and frames divided the panel into six bays with two columns of three bays each along the compressive loading direction. The two frames were supported at the ends with pins to restrict the out-...

متن کامل

Stability Analysis of Laminated Cylindrical Shells under Combined Axial Compression and Non-Uniform External Pressure

This study investigates geometrical non-linear analysis of composite circular cylindrical shells under external pressure over part of their surfaces and also shells subjected to combined axial compression and triangular external pressure. Donnell non-linear shell theory along with first order shear deformation theory (FOSD) are adopted in the analysis. In the case of combined axial compression ...

متن کامل

Quasi-static Axial Compression of thin-walled Circular Composite Tubes

Assessing the behavior of composite structures which are subjected to impact loads is one of the important subjects in the field of mechanical sciences. Using thin-walled tubes which collapsed and absorbed the impact energy is a well-known method to prevent damages to the other parts of the structures. In this paper, deformations, crushing length, peak load, mean force and energy absorption cap...

متن کامل

Compression Analysis of Hollow Cylinder Basalt Continuous Filament Epoxy Composite Filled with Shape Memory Wire

This paper presents an experimental investigation into the compression behavior of shape memory alloy hybrid composites (SMAHC) subjected to quasi-static loading taking into account of rotation effects of shape memory wire in basalt continuous filament (BCF) direct roving epoxy composite. Two types of specimen prepared, the BCF direct roving reinforced epoxy composite filled with shape memory w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Composite Structures

سال: 2023

ISSN: ['0263-8223', '1879-1085']

DOI: https://doi.org/10.1016/j.compstruct.2022.116393